3 research outputs found

    Dictionary Learning for Deblurring and Digital Zoom

    Get PDF
    This paper proposes a novel approach to image deblurring and digital zooming using sparse local models of image appearance. These models, where small image patches are represented as linear combinations of a few elements drawn from some large set (dictionary) of candidates, have proven well adapted to several image restoration tasks. A key to their success has been to learn dictionaries adapted to the reconstruction of small image patches. In contrast, recent works have proposed instead to learn dictionaries which are not only adapted to data reconstruction, but also tuned for a specific task. We introduce here such an approach to deblurring and digital zoom, using pairs of blurry/sharp (or low-/high-resolution) images for training, as well as an effective stochastic gradient algorithm for solving the corresponding optimization task. Although this learning problem is not convex, once the dictionaries have been learned, the sharp/high-resolution image can be recovered via convex optimization at test time. Experiments with synthetic and real data demonstrate the effectiveness of the proposed approach, leading to state-of-the-art performance for non-blind image deblurring and digital zoom

    Learning to Estimate and Remove Non-uniform Image Blur

    Get PDF
    International audienceThis paper addresses the problem of restoring images subjected to unknown and spatially varying blur caused by defocus or linear (say, horizontal) motion. The estimation of the global (non-uniform) image blur is cast as a multi-label energy minimization problem. The energy is the sum of unary terms corresponding to learned local blur estimators, and binary ones corresponding to blur smoothness. Its global minimum is found using Ishikawa's method by exploiting the natural order of discretized blur values for linear motions and defocus. Once the blur has been estimated, the image is restored using a robust (non-uniform) deblurring algorithm based on sparse regularization with global image statistics. The proposed algorithm outputs both a segmentation of the image into uniform-blur layers and an estimate of the corresponding sharp image. We present qualitative results on real images, and use synthetic data to quantitatively compare our approach to the publicly available implementation of Chakrabarti et al. (2010)
    corecore